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This paper reports from a broad investigation of mathematics knowledge as dependent 
on interconnected concepts. The paper focuses specifically on illustrating how network 
analysis may be used in examining spatiotemporal relationships between learned 
mathematics concepts, or curriculum outcomes, and concepts inherent in assessment 
items. Connections both within and between year levels are shown, based on primary 
years’ multiple-choice assessment items related to measurement. Network analysis 
provides a potentially powerful tool that may offer educators greater specificity in 
approaches to the design of revision and intervention through a view of complex rather 
than linear conceptual connectivity in mathematics learning. 

INTRODUCTION 

This paper uses analysis based in network theory, a modern development of graph 
theory, to illustrate connections between measurement items as part of a larger project 
MathsLinks: Spatiotemporal Links in Mathematics Learning in Classroom and Online 
Environments. A major thrust of this project is an examination of the connections 
between learned concepts as curriculum outcomes (e.g., Woolcott, 2013) and concepts 
inherent in assessment items. Network representations of such connections provide a 
spatiotemporal view of conceptual development in mathematics, with illustration here 
of complex connectivity in assessment items within and across year levels. 

This project is based in a growing awareness that knowledge is interconnected and it 
utilises the strong groundwork for quantitative and qualitative investigation laid down 
in approaches using complexity theory (e.g., Davis, Sumara & Luce-Kapler, 2008). 
Although such approaches have been applied only recently in educational studies, 
student knowledge of mathematics has been linked specifically to complex and 
non-linear concept connectivity using network theory, with Mowat & Davis (2010) 
viewing mathematics in terms of ‘complex networks’. Successful learning, in this 
view, depends on the development of major network junctions, or hubs, that support 
non-linear conceptual development, as well as the development of weak connections 
that circumvent hub failures (Khattar, 2010). 

BACKGROUND 

Network theory is a widely used and powerful tool for representing and examining 
relationships in terms of system connectivity, and follows a well-established analytical 
methodology that allows qualitative mapping and quantitative analysis of the 
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relationships between nodes connected in a network (Newman, Barabási, & Watts, 
2006). Network analysis has been applied widely across differing disciplines, largely 
because the rules governing network relationships remain independent of the nature of 
the subjects being linked (Newman et al., 2006). The main focus of Mowat and Davis 
(2010) is an argument that mathematics can be integrated through an examination of 
the complex linkages between mathematics concepts based on the embodied 
metaphors of Lakoff and Núñez (2000). A sidebar to this argument, however, is that 
mathematics concepts so integrated must be linked as networks. This seems to have 
support from the notion of expertise gained through the development of schemas, 
themselves arguably a type of network (Sweller, van Merriënboer, & Paas, 1998). The 
idea of knowledge linked as networks implies not only that mathematics concepts are 
linked together, but also that they are linked to other concepts in what Khattar (2010) 
considers as bodily experiences that are experienced emotionally.  

Contemporary mathematics curricula, however, can be seen as constructs that are, in 
effect, a sequence of disconnected ‘learned concepts’ (e.g., see Chapter 1 in Glatthorn, 
Boschee, Whitehead & Boschee, 2012). Devlin (2007) has argued that a mathematics 
learner may have a functional understanding of a taught concept, as a learned concept, 
if the learner shows, through assessment, some level of understanding of that concept. 
A mathematics curriculum concept, in this sense, is a concept being taught that is being 
defined in terms of what the learner can do with it. A primary school teacher, for 
example, may consider student knowledge of addition of one-digit numbers to be a 
concept, but later to consider knowledge of addition of any two-digit numbers to be 
also a concept. The view of a mathematics concept as determined by a curriculum and 
its assessment, however simplistic, is useful in that the links between learned concepts 
may be traceable, using assessment results, in terms of functional understanding 
(Woolcott, 2013). It may be possible, for example, using a sequence of assessments, to 
determine if a primary school student, who has answered successfully a question 
involving knowledge about circles, has knowledge of other mathematics concepts that 
have led either linearly, or through a network of supporting links, to that knowledge 
(e.g., Lamb, 1999, in Mowat & Davis, 2010). 

METHODOLOGY 

Large-scale testing programs, such as the Australian National Assessment Program – 
Literacy and Numeracy (NAPLAN) (ACARA, 2012) and the Australasian Schools 
Mathematics Assessment (ASMA) (EAA, 2012) include multiple-choice test items for 
assessing mathematics curriculum outcomes. Feedback from such testing is limited to 
assessing student responses against the outcome-based items. Network analysis 
methodology illustrates here how a more complex view of mathematics learning, 
generated from item data, may assist educators in understanding how concepts are 
related and why students find it difficult to make key connections between concepts.  

This paper shows examples of representations (maps) based on network analysis of 
measurement items, about 6-8 items per assessment, from a larger analysis of 
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2009-2012 ASMA across primary school Years 3-6 in NSW, Australia. The Year 6 
network results represent a single class sample of 62 students. The power of this 
analysis in comparing concepts longitudinally is illustrated using a map generated 
from results of one student who had completed ASMA in each of the years 2009-2012.  

Concept survey and matrix coding 

A matrix of coded data generated from a concept survey of all measurement items, was 
analysed and maps generated using NetDraw (Borgatti, 2002). Each of the items was 
assigned one or more outcomes from the NSW K-6 Syllabus (BOS, 2012). Adapting 
Newman’s Error Analysis (NEA, see White, 2010), additional inherent concepts were 
generated as ‘access concepts’ (Do I understand the question?) and ‘answer concepts’ 
(Can I now answer the question?). A limitation in using NEA for multiple-choice items 
is that analysis of student strategies cannot be used. Words as concepts, however, were 
included (e.g., Radford, 2003), as well as overarching concepts that allowed 
interpretation of diagrams (e.g., Lowrie, Diezman & Logan, 2012). An example of the 
concepts surveyed is shown in Figure 1 for a Year 5 ASMA practice question. 

 
Figure 1: Concepts determined for a Year 5 multiple-choice measurement item. 

Practice item used with the permission of EAA. 

For each of the ASMA Years 3-6 measurement items, responses and survey results 
were coded as follows: correct items and associated outcome/concepts as 1; incorrect 
items and associated outcome/concepts as 0. In network maps constructed using the 
matrix, nodes are either outcomes/concepts or items. Table 1 shows a sampling of the 
coded matrix for a Year 6 student with Item 2 correct and Item 5 incorrect. 

 

Inherent item concepts 
Access  
Recognise 3D representation in 2D image 
Concept of volume 
Object contains a liquid 
Objects may contain different volumes  
 
Answer  
Select informal unit to describe volumes 
Estimate volumes 
Compare volumes  
Words: Which, contains, most 

The Measurement Outcomes 

MES1.3  Compares the capacities of containers and the volumes of objects or substances 
using direct comparison 

MS1.1    Estimates, measures, compares and records volumes and capacities using informal 
units 



Woolcott, Chamberlain, Scott, Sadeghi 

5 - 388 PME 2014 

Outcomes/Concepts Item 2  Item 5 
MES1.5  (NSW K-6 outcome) 1 0 
Recognise graph  (access concept) 1 0 
Read columns in graph  (answer concept) 1 0 
MS2.4  (NSW K-6 outcome) 0 0 
Word: bought  (access concept) 0 0 
Adds mass in grams  (answer concept) 0 0 

Table 1: Matrix coding for items and outcomes/concepts, for a Year 6 student with 
Item 2 correct and Item 5 incorrect. (Sample only - not all concepts shown.) 

Direct and inferred network connections 

As well as direct relationships between items and outcomes/concepts (Figure 2), 
analysis utilised two types of inferred relationships: connections between the 
concepts/outcomes associated with an item; and connections between all 
concepts/outcomes of two or more items that shared a concept/outcome. The inferred 
network maps in Figures 3 and 4 are designed to provide additional structural 
overviews of any concept connectivity. Two types of weightings have been calculated 
for these network connections: simple weighting based on total numbers of students 
with correct/incorrect item responses (Figure 2), and; weightings based on class 
averages of these item responses (Figure 3). Network maps provide a diagnostic tool 
that can act as a guide to assessed mathematics knowledge and potential interventions 
and, although associated metrics can also provide additional insights, such as patterns 
of conceptual linkage, these are included elsewhere in this project.  

RESULTS AND DISCUSSION 

Individual and class connectivity – Year 6 measurement items 

The network map in Figure 2 shows direct connections (lines) between nodes 
representing items (squares) and their outcomes/concepts (circles) for incorrect items. 
Each item node is a hub, since all paths from one of its concepts/outcomes to another 
must pass through the item node. Connection weights were calculated from totals of 
incorrect item responses across the Year 6 class, with heavier lines representing larger 
numbers of incorrect responses. The circled node indicates an outcome/concept shared 
across 3 items, one of several that form the basis for the inferred connectivity maps. 
Figure 3 shows such an inferred connectivity map for the Year 6 class, focusing again 
on incorrect responses (concepts excluding words). Network maps such as Figure 3 
allow an educator to identify key outcomes/concepts that were, on average, incorrect 
and that may need to be reinforced for successful future learning, in case of hub failure 
(see e.g., Khattar, 2010; Mowat & Davis, 2010). The type of inferred analysis in Figure 
3 may be particularly useful in its representation of connections between concepts or 
outcomes which were being used correctly in one context and incorrectly in another, 
on average (e.g., the connection between the dotted squares). The dotted squares, for 
example, show concepts that were shared across items that, although incorrect in one 
item, were correct in other items, more than 50% of the time in this simple illustration. 
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Figure 2: Direct connectivity map for Year 6 students with incorrect item responses  

The heavier the line, the larger the number of incorrect responses. Items are indicated by 
filled squares and outcomes/concepts by filled circles. The dotted circle shows a shared 
concept, in this case ‘a numeral written as a word’. 

 
Figure 3: Inferred connectivity map, average weighted, for Year 6 students with 

incorrect item responses. 

Solid lines are based on incorrect to incorrect connections and dashed lines on incorrect to 
correct connections between inherent item concepts (with word concepts not included for 
clarity). Concepts are indicated by filled circles. The dotted squares show two of the nodes 
that, on average, connect these concepts in incorrect and correct items. 
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The network analysis represented in Figures 2 and 3 (and other analysis not shown 
here) indicates to the teacher that a number of students in this class have not grasped 
particular measurement outcomes/concepts in this Year 6 assessment. These 
outcomes/concepts, therefore, may be a useful target for revision or intervention, even 
if it is only the centrally located outcomes/concepts that are targeted. The teacher could 
use such analysis to assist in design of revision or intervention around 
outcomes/concepts connected to the incorrect item responses for either the entire class 
or for individuals. Since this type of representation can also show nodes weighted by 
degree (number of connections), it offers further specificity for the classroom teacher 
as to relationships between items, outcomes and inherent concepts.  

Longitudinal connectivity – Year 3-6 measurement items 

Figure 4 shows one of a number of possible inferred relationship maps that can 
represent longitudinal connectivity. In this case the map shows inferred connections 
between the incorrect Item 10 in Year 6 and items in Years 3-5. The item connections 
were inferred from shared outcomes/concepts, effectively reversing the inference 
process utilised to construct Figure 3. For a focus on curriculum, this analysis could 
also feature inferred connections between outcomes instead of items, or connections 
between outcomes and inherent item concepts. 

 

Figure 4: Inferred connectivity of the incorrect Year 6 Item 10 with items in Years 3-5. 

Solid lines are based on incorrect to incorrect connections and dashed lines on incorrect to 
correct items. Items are indicated by filled squares with an item number. 

Figure 4 shows how Year 6 items can be connected to items in previous years, 
effectively a ‘concept trail’ through past items, indicating which items and associated 
outcomes/concepts were/were not learned successfully. Analysis exemplified in 
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Figure 4, used in conjunction with that in Figures 2 and 3, may be useful, therefore, in 
designing revision or intervention that includes prior knowledge over time, as far back 
as Year 3 in this case, but over differing periods in such testing systems as NAPLAN. 
Two of the authors (Woolcott and Chamberlain) are using this longitudinal 
connectivity to trial an interactive ‘App’ designed to link curriculum outcomes and 
inherent concepts to intervention strategies for both multiple-choice and other styles of 
assessment items. The broader project aims to test the success of such strategies. 

IMPLICATIONS AND FUTURE RESEARCH DIRECTIONS 

This paper provides an example of the network analysis we have been developing in 
order to examine the spatiotemporal interconnectivity of mathematical concepts. 
Although the application of network theory outlined here draws on extensive 
theoretical research on complex connectivity in mathematics (e.g., Lakoff & Núñez, 
2000; Mowat & Davis, 2010), the illustrations aim specifically at an initial 
examination of whether network analysis is functional in the context of a school 
mathematics curriculum. This functionality is shown in the exemplar representations 
here as both direct and inferred connections between inherent concepts and outcomes 
derived from assessment items. The representation of longitudinal connectivity, in 
particular, gives a functional picture of conceptual development in mathematics over 
time. This paper shows examples of novel conceptual connections between outcomes 
and inherent item concepts, in this case for primary years measurement items, that are 
not currently utilised in the analysis of such large-scale testing programs as ASMA and 
NAPLAN. 

The analysis here provides support for the view that new mathematics knowledge, 
even when described in terms of outcomes, requires prior knowledge (Sweller et al., 
1998). Longitudinal representations may allow a more extensive analysis of prior 
knowledge than that undertaken in large-scale testing programs. The analysis here 
supports also broader analyses we are undertaking at differing conceptual levels, 
including analyses using embodied conceptualisations (Roth & Thom, 2009) and 
conceptualisations based on graphic elements in mathematics tasks (Lowrie et al., 
2012) and pattern and structure (Mulligan, English, & Mitchelmore, 2013). 
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